

Smurfs - frequency analysis made easy

[image: _images/Uh2UhpZ.png]
SMURFS provides a fully automated way to extract frequencies from
timeseries data sets. It provides various interfaces, from a standalone command line tool, to jupyter and python
integrations and computes possible frequency combinations, directly downloads and reduces (if necessary) data
of TESS/Kepler/K2 observations and much much more.

You can use SMURFS both integrated in your code, as well as a stand-alone product in the terminal. After checking
installation page, you can take a look at the
quickstart page, which gives you the easiest possible example on how to use SMURFS.
For more detail on the usage as a stand-alone product, standalone settings page. For more
information on what SMURFS is all about, check the About SMURFS page. SMURFS also gives you
an interactive mod to work with SMURFS. Its basic usage is described in the
Interactive Mode page.

After this, you might be interested on how SMURFS actually works. A good starting point is the
Internals page, which shows you how SMURFS gets to its result. It should also give you a basic
idea on the different classes. The most important ones are described in the various class documentation pages, which
documents all the different classes. If you are interested on how SMURFS downloads data sets and reduces them, check
the downloads page.

SMURFS also allows you for vastly more advanced usage of its internals. The advanced examples page shows you some
of those in jupyter notebooks. However, you can apply the same procedures in the interactive mode.

Getting started

	About SMURFS

	Installation and requirements

	Quickstart

	Interactive Mode

	Standalone settings

Important classes

	Internals

	Downloading and reducing data

	smurfs.Smurfs

	smurfs.FFinder

	smurfs.Frequency

	smurfs.Periodogram

	Other functions

Advanced examples

	Downloading data

	Plotting things

	Looking at the full frame images of SC data

Index and search function

Index

Search Page

About SMURFS

Functionality

At its heart, SMURFS is a tool designed to extract significant frequencies from a time series in a fully automated way.
SMURFS can be very easy to use, and give you quick insight into the data. It is also designed to be as configurable
as one wants it to be, and it is possible to drill down to the individual frequencies.

In its simplest form, one only needs to provide a name of a star that is observed by the missions supported by SMURFS
(e.g. TESS, Kepler, K2), the minimum Signal to Noise Ratio (SNR, being the ratio of the signals amplitude and the mean
of the surrounding area in the amplitude spectrum) and the window size (defining the area around the peak, which SMURFS
considers as a proxy for noise).

But what if i want to do a deeper analysis? SMURFS has you covered there as well and has loads of configurability and
settings, allowing you to take a deeper look. For example, SMURFS can download/extract different data products, with
different amount or reduction applied. You can specify, how the frequencies are fitted to the data, you can look at
specific frequency ranges, you can fold and flatten your light curves and much more.

To get you started, you should first check the installation page, to make sure you have all
prerequisites installed. Afterwards, take a look at the quickstart page, giving you a first easy example.
Afterwards, feel free to roam this documentation and check out the different possibilities you have with SMURFS.

References and links

Of course, SMURFS wasn’t built in a vacuum. Check out these amazing packages on which SMURFS is built on:

	Lightkurve [https://docs.lightkurve.org/]: Lightkurve is the heart and soul of all time series/periodogram
objects in SMURFS. Therefore you can use the whole Lightkurve API on these types of objects
(for example: Smurfs.lc, Smurfs.pdg).
Here [https://docs.lightkurve.org/api/lightkurve.lightcurve.LightCurve.html#lightkurve.lightcurve.LightCurve]
is a link to the API for LightCurve objects for example.

	Eleanor [https://github.com/afeinstein20/eleanor]: Eleanor is a python package, that allows for extraction
of long cadence light curves from TESS FFIs.

Installation and requirements

Requirements

SMURFS is available through pip on all python versions >= 3.5. Before you can install it, make sure that you have
pip, python, and most importantly cmake. If you don’t have these installed, use your favourite package
manager to install them.

Installation

First off, create a virtual environment

cd /Path/
python3 -m venv venv/
source venv/bin/activate

Install smurfs through pip

pip install smurfs

Quickstart

Usually if we want to take a look at the time series of a given star, we want to take a look at its amplitude spectrum
and time series and extract the significant frequencies from it. Depending on the object, this can be a quite
involved process, starting with getting the data products, computing the amplitude spectrum and running it through
some manual tool that extracts frequencies for us. SMURFS makes this process really simple, and takes care of
all of those steps.

Lets say we want to take a look at the namesake of Delta Scuti pulsators, Gamma Doradus. Assuming you have
a virtual environment activated that contains a SMURF installation. To analyse Gamma Doradus, we can then simply call

smurfs "Gamma Doradus" 4 2

The three parameter in this call are the absolute minimum you need to provide for SMURFS. Lets go through them:

	First parameter: The first parameter in a smurfs call represents the object, name or file containing the time
series. For example, if you would have a file called light_curve.txt in your path, you can simply provide the file
name as the parameter. However, if you provide a name, like in the example above, SMURFS will download/extract the
light curve for you.

	Second parameter: The second parameter represents the lower bound of the Signal to Noise Ratio (SNR). SMURFS
understands the SNR as the ratio between the amplitude of an individual frequency and its surrounding
background noise. More on that below.

	Third parameter: Lastly, the third parameter represents the window size considered by SMURF when computing
the SNR of any given frequency. Again, more on this parameter below.

So now that you have your analysis running, you should find the following output in your terminal:

[image: ../_images/gamma_doradus_output.png]
SMURFS now generated a result path for this star. It takes the name given as the first parameter (or the filename
without the file ending) and creates a folder containing all necessary results. This is its file structure:

- Gamma_Doradus
- data
 - combinations.csv
 - result.csv
 - LC_residual.txt
 - LC.txt
 - PS_residual.txt
 - PS.txt
- plots
 - LC_residual.pdf
 - LC.pdf
 - PS_residual.pdf
 - PS_result.pdf
 - PS.pdf

Additionally, it creates a Validation page if you extracted a target from TESS FFIs (also more on that later). now,
what is in these files?

	data - plots folders: The names of theses folders should be self explanatory. data contains text files with
the results, and plots some relevant plots about the analysis.

	combinations.csv: For every run SMURFS performs, it automatically computes possible combination frequencies,
that might not be real signal in the time series. This file contains these combinations. You can simply load it
in python using pandas.read_csv if you want to do something with it further

	result.csv: The results file contains a myriad of information about the SMURFS run. It first gives you the
settings with which SMURFS ran. Next, it shows you some statistics, like Duty cycle, Nyquist frequency and ottal
number of found frequencies. Lastly, it lists all significant frequencies found by SMURFS. Due to the fact that
this file is actually a combination of three csv files, it isn’t very straight forward to load this file again.
SMURFS provides a function for that though. If you call _Smurfs.load_results(path)_, it will load this file and
return three pandas objects. Amplitudes are always given in magnitudes

	LC and PS files: LC and PS files represent the computed periodogram and used light curve (after sigma clipping),
with which SMURFS ran. The residual files show you the light curve and periodogram after all found frequencies
have been removed from the initial data set.

	pdf files: Again, these are pretty much self explanatory. They show you plots of the result, the residual and
the initial data set.

In its simplest form, this is it for SMURFS. You can now go on and do cool science with those results. If you are
interested in all possible parameters, when using SMURFS as a stand alone product, check the
standalone settings page. You can also take a look at the various examples, that
are provided with this documentation. Alternatively, if you want to embed SMURFS in your code, you should check the
API page, as well as the examples for such use cases. You can also take a look at the
internals page, to give you an idea how SMURFS actually performs its task.

Interactive Mode

One of the core features of SMURFS is the ability to actually interact with the result of a SMURFS run. It therefore
has something called an interactive mode. To activate it, you have the positional argument –interactive,
or -i.

smurfs "Gamma Doradus" 4 2 -i

If a run is then completed, SMURFS will start an IPython [https://ipython.org/] shell. IPython has a couple of
advantages to a normal Python shell:

	Object introspection and a powerful autocompleter

	An input history and search

	magic commands, similar to jupyter

and much more. Check the IPython documentation, if you are interested in more details.

After the shell is started, you get prompted by the following message:

[image: ../_images/interactive_mode.png]
To interact with the SMURFS object, you can use the star object. Using this object you can do a myriad of things.
For example, you can open an interactive plot of the light curve, by calling

star.plot_lc()

resulting in the following output:

[image: ../_images/interactive_plot.png]
This is just a small glimpse on what you can do with interactive mode. The star object has the full capabilities
of the smurfs.Smurfs class. You can check the internals page page, to
get an idea how SMURFS is built. After that, you can also check the advanced examples. These are written in Jupyter
notebooks, but all of the usages there are available in the interactive mode as well.

Standalone settings

You have now completed the Quickstart example. But what options are available to run SMURFS? Below you can find a
full list of settings available through the terminal. If you are interested in some examples, you can take a look at
those as well. Mandatory parameters are noted as such, the optional ones give you the default as well. Call
smurfs -h to show a help message, explaining all parameters.

Positional arguments are required for every run of SMURFS. Named parameters can be used as explained below

usage: smurfs [-h] [-fr FREQUENCYRANGE] [-ssa] [-sc] [-ef EXTENDFREQUENCIES]
 [-fd FREQUENCYDETECTION] [-imf {all,end,none}]
 [-fm {scipy,lmfit}] [-ft {PDCSAP,SAP,PSF}] [-pca] [-psf] [-so]
 [-sp SAVEPATH] [-i] [-m {Kepler,TESS,K2}] [-cl SIGMACLIP]
 [-it ITERS] [-ac] [--version]
 target snr windowSize

Positional Arguments

	target

	This parameter represents the target analyzed by SMURFS. This parameter is rather vague, to give you the maximum amount of flexibility. Either you can provide any name of a star (resolvable through Simbad) that has been observed by TESS/Kepler/K2. You can also provide a filename through this parameter.

If you choose to do the the first, the code prioritizes TESS over all other missions (if you don’t provide the mission parameter), and SC over LC observations. It then checks MAST if there are SC observations from TESS for this star. If there are, it uses lightkurve.search_lightcurvefile to download those. If there are none, it checks if there are LC observations from TESS and uses Eleanor to extract the light curves from the FFIs. If there are None, it searches all other missions for light kurves of this object.If you choose another mission, it will call lightkurve.search_lightcurvefile for this specific mission.

If you choose to provide a file through this parameter, make sure that you follow these conventions:

	The file must be an ASCII file

	The first column must contain the time stamps

	The second column must contain the flux

	If a third column exists, SMURFS will assume that these are the uncertainties in the flux.

SMURFS will take the file as is and won’t apply any corrections to it, if you don’t use the apply_corrections flag. It then assumes that the flux values are in magnitude and varying around 0, that the time stamps are in days and that the data set is properly reduced.

	snr

	This parameter represents the lower bound signal to noise ratio any frequency must have. SMURFS computes the SNR by taking the amplitude of an individual frequency (as defined by the amplitude in the frequency spectrum). Next, it applies half of the window size to either side of the frequency, starting by the next adjacent minima, and takes the mean of this window as the noise surrounding the frequency. The ratio of these two values is the resulting SNR for an individual frequency. By default, SMURFS stops its run when the first frequency less than this value has been found

	windowSize

	The window size used to get the SNR for a given frequency. SMURFS defines the window as half of the given value on each side of the peak in the periodogram, starting from the first minima next to the peak.

Named Arguments

	-fr, --frequencyRange

	Setting this parameter, allows you to restrict the analysis of a time series to a given range in the frequency spectrum. This might be useful, if yo have a lot of high amplitude noise in another part of the spectrum, than the one you might be interested in. Provide the parameter in the form 0,100.

Default: “None,None”

	-ssa, --skipSimilarFrequencies

	Ignores regions where SMURFS finds multiple frequencies within a small range. This can happen due to insufficient fits or signals that are hard to fit.

Default: False

	-sc, --skipCutoff

	By default, SMURFS stops the extraction of frequencies if it finds 10 frequencies in a rowthat have a standard deviation of <0.05, as it assumes it can’t work itself out of this region. You can override this behaviour by setting this flag. Be aware, that this might lead to unknown behaviour. Usually, instead of setting this flag, it is better to set the -ssa flag

Default: False

	-ef, --extendFrequencies

	Extends the analysis by n frequencies. By default, SMURFS stops when it finds the first insignificant frequency. Setting this parameter requires SMURFS to find n insignificant frequencies in a row.

Default: 0

	-fd, --frequencyDetection

	If this value is set, a found frequency is compared to the original periodogramm. If the ratio between the amplitude of the found frequency and the maximum in the range of the found frequency on the original periodogram is lower than the set value, it will ignore this frequency range going forward.

	-imf, --improveFitMode

	Possible choices: all, end, none

This parameter defines the way SMURFS uses a Period04 like improvement of frequencies. You can set the following modes:

	all: Tries to refit all found frequencies after every frequeny that is found. This is the usual behaviour of Period04 and the default setting.

	end: Improves the frequencies after SMURFS would stop its run

	none: Disables the improve frequencies setting. This can be useful if you find a lot of frequencies and the run would take an unnecessary amount of time

Default: “all”

	-fm, --fitMethod

	Possible choices: scipy, lmfit

SMURFS implements two different fitting libraries: Either it uses scipy (scipy.optimize.curve_fit) or lmfit (lmfit Model fit). Choosing one over the other might lead to different results, so if you have find an unexpected result, try to switch the fitting mode.

Default: “lmfit”

	-ft, --fluxType

	Possible choices: PDCSAP, SAP, PSF

The TESS mission gives its end users different data products to choose, if you download them directly from MAST. You can pass the type of data product you like using this parameter. For the SC data, where the light curve is preprocessed by SPOC, you can choosetwo different products:

	SAP flux: SAP is the simple aperture photometry flux (resulting light curve is the flux after summing the calibrated pixels within the TESS optimal aperture)

	PDCSAP flux: PDCSAP is the Pre-search Data conditioned Simple aperture photometry, which is corrected using co-trending basis vectors.

By default we use the PDCSAP flux, but you can also choose another one if you like.

If your target is only observed in LC mode, SMURFS also provides these two modes (these have a slightly different meaning, their result is however equivalent to the SC SAP and PDSCAP fluxes, see the Eleanor documentation). However, in LC mode you have also the PSF flux type, which models a point spread function for a given star. The validation page generated when SMURFS extracts a target from a FFI always shows the SAP and the chosen flux to compare. You might want to try different settings, depending on your use case

Default: “PDCSAP”

	-pca, --do_pca

	Activates the PCA analysis (aperture × TPF + background subtraction + cotrending basis vectors). This doesn’t change the data you are trying to analyze, but shows the PDSCAP flux in the validation page. Only applicable when using LC data.

Default: False

	-psf, --do_psf

	Activates the PSF analysis. This adds point spread function modelling to the extraction of light curves from FFIs. This doesn’t change the data you are trying to analyze, but shows the PSF flux in the validation page. Only applicable when using LC data.

Default: False

	-so, --storeObject

	If this flag is set, the SMURFS object is stored in the results. You can later use this object to load the _result into a python file using ‘Smurfs.from_path’. Allows you to easily access all convenience functions from SMURFS.

Default: False

	-sp, --savePath

	Allows you to set the save path of the analysis. By default it will save it in the same folder, where the module was called.

Default: “.”

	-i, --interactive

	Using this flag will automatically start an iPython shell. This allows for direct interaction with the result using the ‘star’ object. You can then access all convenience functions directly (like plotting, the FrequencyFinder object, etc).

Default: False

	-m, --mission

	Possible choices: Kepler, TESS, K2

Three different missions are available: Kepler,TESS,K2. You can choose the mission by setting this value. By default, only TESS missions are considered

Default: “TESS”

	-cl, --sigmaClip

	Sets the sigma for the sigma clipping. Default is 4.

Default: 4

	-it, --iters

	Sets the iterations for the sigma clipping. Default is 1.

Default: 1

	-ac, --apply_corrections

	If this flag is set, correction (sigma clipping, conversion to magnitude) are applied to files. Make sure that your flux is in electron counts if you use this flag.

Default: False

	--version

	Shows version of SMURFS

Internals

To understand the internals of SMURF, lets first consider this rough schematic on the run taken in the
quickstart page.

[image: ../_images/schematic_overview.png]
Very generally, what SMURFS does is the following procedure:

	Create a smurfs.Smurfs() object according to the settings provided through the constructor or through the command line

	Call smurfs.Smurfs.run(). This in turn creates a smurfs.FFinder() object, stored in the smurfs.Smurfs.ff() property.

	smurfs.Smurfs.run() calls smurfs.FFinder.run(), which iteratively tries to find all significant frequencies in the data.

	This iterative run creates a smurfs.Frequency() object for each frequency it finds.

	After it finds the first insignificant frequency (insignificant defined through the set SNR and window size) or after n insignificant (if the extend_frequencies parameter is set) it stops the run and saves the data

There are a lot of different settings you can set that slightly change this behaviour one way or the other, but in
principle it stays this way. While the individual pages on the classes give you a lot more insight on the each of them,
we want to give an overview here over the individual classes.

smurfs.Smurfs()

This is the base class, which is the prime interface to all things SMURFS. If you want to incorporate SMURFS into
your own code, you want to follow this procedure (this is what SMURFS does internally also when using it as
a standalone tool):

1) Instantiate smurfs.Smurfs() through the constructor and pass the appropiate parameters.
Use the file parameter if you want to provide a file, use the time and flux parameter if you want to provide
these things directly as arrays or use the target_name parameter if you want to provide the name of the target.

	Call smurfs.Smurfs.run() to start the analysis. Provide the parameters according to its documentation.

	Call smurfs.Smurfs.save() to save the data to the path of your choosing.

This will store the result as described in quickstart page. After you completed step 2, you will
also have direct access to the smurfs.Smurfs.result() property. This property, at its heart, is a simple
pandas [https://pandas.pydata.org/] object. It contains all the individual smurfs.Frequency() objects and
you can access each individual one through iloc. Assuming your SMURFS object is called star, you can access it like
this:

In [1]: star.result
Out[1]:
 f_obj frequency amp phase snr res_noise significant
f_nr
0 <smurfs._smurfs.frequency_finder.Frequency obj... 1.363741+/-0.000004 0.01033+/-0.00008 0.3267+/-0.0012 14.621918 -0.000890 True
1 <smurfs._smurfs.frequency_finder.Frequency obj... 1.321203+/-0.000004 0.01025+/-0.00008 1.2294+/-0.0012 17.646618 -0.000841 True
2 <smurfs._smurfs.frequency_finder.Frequency obj... 1.470777+/-0.000015 0.00281+/-0.00008 0.965+/-0.004 7.578344 -0.000855 True
3 <smurfs._smurfs.frequency_finder.Frequency obj... 1.878144+/-0.000017 0.00241+/-0.00008 0.517+/-0.005 6.717144 -0.000854 True
4 <smurfs._smurfs.frequency_finder.Frequency obj... 1.385307+/-0.000018 0.00223+/-0.00008 0.175+/-0.005 7.318523 -0.000865 True
5 <smurfs._smurfs.frequency_finder.Frequency obj... 0.316642+/-0.000020 0.00203+/-0.00008 0.254+/-0.006 5.597835 -0.000865 True
6 <smurfs._smurfs.frequency_finder.Frequency obj... 1.417226+/-0.000023 0.00181+/-0.00008 0.384+/-0.007 6.523381 -0.000859 True
7 <smurfs._smurfs.frequency_finder.Frequency obj... 2.742524+/-0.000023 0.00178+/-0.00008 0.943+/-0.007 9.558567 -0.000859 True
8 <smurfs._smurfs.frequency_finder.Frequency obj... 0.112357+/-0.000025 0.00163+/-0.00008 0.023+/-0.007 5.270446 -0.000856 True
9 <smurfs._smurfs.frequency_finder.Frequency obj... 1.237200+/-0.000029 0.00139+/-0.00008 0.091+/-0.009 5.176608 -0.000856 True
10 <smurfs._smurfs.frequency_finder.Frequency obj... 1.68152+/-0.00004 0.00112+/-0.00008 0.166+/-0.011 4.585938 -0.000860 True

You can access each indivdual frequency through pandas iloc method, and the individual values through their names.
For example, you can access the frequency object like this:

In [2]: star.result.iloc[0]
Out[2]:
f_obj <smurfs._smurfs.frequency_finder.Frequency obj...
frequency 1.363741+/-0.000004
amp 0.01033+/-0.00008
phase 0.3267+/-0.0012
snr 14.6219
res_noise -0.000889747
significant True
Name: 0, dtype: object

In [3]: star.result.iloc[0].f_obj
Out[3]: <smurfs._smurfs.frequency_finder.Frequency at 0x12c0536a0>

This way you can access the full interface of the smurfs.Frequency() class.

You can also access the linked smurfs.FFinder() object through the smurfs.Smurfs.ff() property:

In [4]: star.ff
Out[4]: <smurfs._smurfs.frequency_finder.FFinder at 0x12c074e48>

The smurfs.Smurfs() object also gives you some statistics about each run. You can access those through the
smurfs.Smurfs.statistics() property:

In [5]: star.statistics
Out[5]:
 Duty cycle Nyquist frequency Total number of found frequencies
0 0.844463 360.001476 11

Reading results works through the smurfs.Smurfs.load_results() method:

In [6]: Smurfs.load_results("Gamma_Doradus/data/result.csv")
Out[6]:
(Unnamed: 0 Signal to Noise Ratio Window size ... Skip similar frequency regions Chancel run after 10 similar frequencies Ignore unsignificant frequencies number
 0 0 4.0 2.0 ... False True 0

 [1 rows x 8 columns],
 Unnamed: 0 Duty cycle Nyquist frequency Total number of found frequencies
 0 0 0.844463 360.001476 11,
 f_nr frequency amp phase snr res_noise significant
 0 0 1.363741+/-0.000004 0.01033+/-0.00008 0.3267+/-0.0012 14.621918 -0.000890 True
 1 1 1.321203+/-0.000004 0.01025+/-0.00008 1.2294+/-0.0012 17.646618 -0.000841 True
 2 2 1.470777+/-0.000015 0.00281+/-0.00008 0.965+/-0.004 7.578344 -0.000855 True
 3 3 1.878144+/-0.000017 0.00241+/-0.00008 0.517+/-0.005 6.717144 -0.000854 True
 4 4 1.385307+/-0.000018 0.00223+/-0.00008 0.175+/-0.005 7.318523 -0.000865 True
 5 5 0.316642+/-0.000020 0.00203+/-0.00008 0.254+/-0.006 5.597835 -0.000865 True
 6 6 1.417226+/-0.000023 0.00181+/-0.00008 0.384+/-0.007 6.523381 -0.000859 True
 7 7 2.742524+/-0.000023 0.00178+/-0.00008 0.943+/-0.007 9.558567 -0.000859 True
 8 8 0.112357+/-0.000025 0.00163+/-0.00008 0.023+/-0.007 5.270446 -0.000856 True
 9 9 1.237200+/-0.000029 0.00139+/-0.00008 0.091+/-0.009 5.176608 -0.000856 True
 10 10 1.68152+/-0.00004 0.00112+/-0.00008 0.166+/-0.011 4.585938 -0.000860 True)

This returns two pandas DataFrames, the first containing the statistics, the second containing the actual results. These
of course don’t include the smurfs.Frequency() objects, as this is only a text file. You can however load a full
smurfs object (if you saved it through setting store_obj=True or by setting the -so flag when using the standalone
version.

In [7]: star = Smurfs.from_path("Gamma_Doradus")

In [8]: star
Out[8]: <smurfs._smurfs.smurfs.Smurfs at 0x13562aa20>

In [9]: star.result
Out[9]:
 f_obj frequency amp phase snr res_noise significant
f_nr
0 <smurfs._smurfs.frequency_finder.Frequency obj... 1.363741+/-0.000004 0.01033+/-0.00008 0.3267+/-0.0012 14.621918 -0.000890 True
1 <smurfs._smurfs.frequency_finder.Frequency obj... 1.321203+/-0.000004 0.01025+/-0.00008 1.2294+/-0.0012 17.646618 -0.000841 True
2 <smurfs._smurfs.frequency_finder.Frequency obj... 1.470777+/-0.000015 0.00281+/-0.00008 0.965+/-0.004 7.578344 -0.000855 True
3 <smurfs._smurfs.frequency_finder.Frequency obj... 1.878144+/-0.000017 0.00241+/-0.00008 0.517+/-0.005 6.717144 -0.000854 True
4 <smurfs._smurfs.frequency_finder.Frequency obj... 1.385307+/-0.000018 0.00223+/-0.00008 0.175+/-0.005 7.318523 -0.000865 True
5 <smurfs._smurfs.frequency_finder.Frequency obj... 0.316642+/-0.000020 0.00203+/-0.00008 0.254+/-0.006 5.597835 -0.000865 True
6 <smurfs._smurfs.frequency_finder.Frequency obj... 1.417226+/-0.000023 0.00181+/-0.00008 0.384+/-0.007 6.523381 -0.000859 True
7 <smurfs._smurfs.frequency_finder.Frequency obj... 2.742524+/-0.000023 0.00178+/-0.00008 0.943+/-0.007 9.558567 -0.000859 True
8 <smurfs._smurfs.frequency_finder.Frequency obj... 0.112357+/-0.000025 0.00163+/-0.00008 0.023+/-0.007 5.270446 -0.000856 True
9 <smurfs._smurfs.frequency_finder.Frequency obj... 1.237200+/-0.000029 0.00139+/-0.00008 0.091+/-0.009 5.176608 -0.000856 True
10 <smurfs._smurfs.frequency_finder.Frequency obj... 1.68152+/-0.00004 0.00112+/-0.00008 0.166+/-0.011 4.585938 -0.000860 True

Be aware that these objects take up a lot of disk space, especially for targets with many significant frequencies.

smurfs.FFinder()

The FFinder object contains the actual logic for the frequency analysis. As describe above, it iteratively runs
through the significant frequencies. The method that is used here is the smurfs.FFinder.run() and performs
the analysis according to its settings. This is mostly an internal class and not much use outside of SMURFS. You
can check the individual methods through its documentation.

smurfs.Frequency()

This class represents each individual frequency. It contains all settings and results for each frequency. The process on
how the result is found is the following:

	The object is built through the constructor by passing the light curve, snr and window size. It computes the corresponding smurfs.Periodogram() object

	Using the frequency with the maximum amplitude in the periodogram, it then computes the boundaries of the peak, by finding the corresponding next two minima to the left and right of the peak

	You can then

The most
important ones are:

	smurfs.Frequency.lc(): Gives you the LightCurve [https://docs.lightkurve.org/api/lightkurve.lightcurve.LightCurve.html#lightkurve.lightcurve.LightCurve] object that the frequency uses for the analysis.

	smurfs.Frequency.amp(): Returns the amplitude of the frequency.

	smurfs.Frequency.f(): Returns the frequency.

	smurfs.Frequency.phase(): Returns the phase of the frequency.

	smurfs.Frequency.snr(): Returns the SNR of the frequency.

Downloading and reducing data

SC data

SMURFS provides various ways to access online data. The following missions are supported and can be accessed through
SMURFS:

	TESS

	Kepler

	K2

You can provide these missions either through the class interface of SMURFS, or as a setting in the standalone version
of SMURFS. In many cases, the download of data is facilitated through
lightkurve [https://docs.lightkurve.org/api/lightkurve.search.search_lightcurvefile.html?highlight=search_lightcurvefile] ,
giving you access to SC data.

SMURFS automatically removes data points with bad quality flags and nans in the flux. In general,
lightkurve.search_lightcurvefile provides the data in electron counts, which SMURFS converts into magnitude. Further,
it normalizes the light curve around zero by removing the median in the data and applies sigma clipping (sigma=4, iters=1)
by default. You can change this behaviour through the appropriate settings in the standalone version, or by setting
the parameters in the smurfs.Smurfs() class.

LC data download

Seeing as the vast majority of targets in TESS are observed in the LC mode, SMURFS also provides a very simple way
to access these targets. It makes heavy use of the eleanor [https://github.com/afeinstein20/eleanor] pipeline.

If you provide a target that has been observed in TESSs LC mode, SMURFS will automatically try to resolve it through
MAST. It then will download a cutout around the target using the TessCut [https://mast.stsci.edu/tesscut/] service.
We then extract the lightcurve by using Eleanor. It automatically tries to find the best aperture around the target,
by checking apertures that have shown to work well with Kepler data. From there, the systematics are removed
from the light curve, and if the PSA flag is set (which is on by default), it applies co-trending basis vectors
to further improve the data. SMURFS also provides a validation page for each LC target, showing you how the
extraction worked.

Using internal functions

While the interface of SMURFS is designed to be as convenient as possible, you can also choose to use the internal
functions to download data and load files. To make the code do the work, you can simply use
smurfs.preprocess.tess.download_lc(). It has a very similar interface to the normal smurfs.Smurfs() class.

If you are interested only in the LC data of a given target (seeing as SMURFS always uses SC data if available), you
can also use the smurfs.preprocess.tess.cut_ffi() function. You need the TIC id of the target to run this
function. If you don’t have it, you can get it using this simple snippet:

from astroquery.mast import Catalogs

Catalogs.query_object(target_name,catalog='TIC',radius=0.003)[0]['ID']

If you are interested in the different observations that exist in MAST for a given target, you can use

from astroquery.mast import Observations

Observations.query_criteria(objectname=target_name, radius=str(0 * u.deg), project='TESS',
 obs_collection='TESS')

smurfs.Smurfs

	
class Smurfs(file=None, time=None, flux=None, target_name=None, flux_type='PDCSAP', label=None, quiet_flag=False, mission='TESS', sigma_clip=4, iters=1, do_pca=False, do_psf=False, apply_file_correction=False)

	The Smurfs class is the main way to start your frequency analysis. The workflow for a generic problem is the
following:

	Instantiate the Smurfs class, by providing the light curve through one of different methods.

	Call ‘run’, by providing at least the signal to noise ratio and window size of the analysis.

	Either save the analysis using ‘save’ or get the result from the class and continue your analysis.

After ‘run’ has finished, you can access the results through various channels:

	Use the ‘ff’ property (returns the ‘FFinder’ instance, where the analysis happens)

	Use the ‘result’ property

The class also has other interesting properties like ‘combinations’ (calculates all possible combinations
for the frequencies from the results, uses [pyfcomb](https://github.com/MarcoMuellner/pyfcomb)), ‘nyquist’ (
the nyquist frequency of the provided data) and more.

You can also plot the results using the ‘plot_lc’ or ‘plot_pdg’ methods.

You can provide a light curve through three different methods:

	Set target_name: Can be any star that has been observed by the TESS or Kepler mission. You can provide any TIC or KIC ID (including KIC/TIC) or any name resolvable by Simbad.

	Set time and flux

	Set file: Needs to be an ASCII file containing time and flux

Either can be used. 1) and 2) will be automatically sigma clipped and converted to magnitude.

	Parameters

	
	file – ASCII file containing time and flux

	time – time column of the light curve

	flux – flux column of the light curve

	target_name – Name of the target, resolvable by Simbad or either KIC/TIC ID

	flux_type – If you supply a target name that has been observed by TESS SC mode, you can choose either ‘PCDSAP’ or ‘SAP’ flux for that target.

	label – Optional label for the star. Results will be saved under this name

	quiet_flag – Quiets Smurfs (no more print message will be piped to stdout)

	
property combinations

	Gives a pandas dataframe of all possible combinations for the frequencies from result. It consists
of the following columns in this order:

	Name: Name of the frequency

	ID: Frequency ID (order in which it was removed from the light curve)

	Frequency: The frequency for which combinations where searched.

	Amplitude: Amplitude of the frequency

	Solution: Best solution for this frequency

	Residual: Residual for the best solution

	Independent: Flag if the frequency is independent according to the solver

	Other_solutions: All other possible solutions for this frequency

Will be populated after run was called.

	
property result

	Gives a pandas dataframe of the result from smurfs. It consists of the following columns in this order:

	f_obj: Frequency object, that represents a given frequency

	frequency

	amp

	phase

	snr

	res_noise: Residual noise

	significant: Flag that shows if a frequency is significant or not

	
property ff

	Returns the FrequencyFinder object.

	
property settings

	Returns a dataframe consising of the settings used in the analysis.

	
property statistics

	Returns a dataframe consisting of various statistics of the run.

	
property obs_length

	Returns the length of the data set.

	
property nyquist

	Returns the nyquist frequency

	
property duty_cycle

	Shows the duty cycle of the light curve

	
property periodogram

	Returns a Periodogram object of the light curve.

	
property spectral_window

	Computes the spectral window of a given dataset by transforming the light curve with constant flux.

	
fold(period, t0=None, transit_midpoint=None)

	Returns a folded light curve. Signature equivalent to lightkurve.LightCurve.fold.

	
flatten(window_length=101, polyorder=2, return_trend=False, break_tolerance=5, niters=3, sigma=3, mask=None, **kwargs)

	Flattens the light curve by applying a Savitzky Golay filter. Signature equivalent to
lightkurve.LightCurve.flatten.

	
run(snr=4, window_size=2, f_min=None, f_max=None, skip_similar=False, similar_chancel=True, extend_frequencies=0, improve_fit=True, mode='lmfit', frequency_detection=None)

	Starts the frequency analysis by instantiating a FrequencyFinder object and running it. After finishing the
run, combinations are computed. See FrequencyFinder.run for an explanation of the algorithm.

	Parameters

	
	snr (float) – Signal to noise ratio, that provides a lower end of the analysis.

	window_size (float) – Window size, with which the SNR is computed.

	f_min (Optional[float]) – Minimum frequency that is considered in the analysis.

	f_max (Optional[float]) – Maximum frequency that is considered in the analysis.

	skip_similar (bool) – Flag that skips a certain range if too many similar frequencies in this range are found in a row.

	similar_chancel – Flat that chancels the run after 10 frequencies found that are too similar.

	extend_frequencies (int) – Extends the analysis by this number of insignificant frequencies.

	improve_fit – If this flag is set, all combined frequencies are re-fitted after every new frequency was found

	mode – Fitting mode. You can choose between ‘scipy’ and ‘lmfit’

	frequency_detection – If this value is not None and the ratio between the amplitude of the found frequency and the amplitude of the frequency in the original spectrum exceeds this value, this frequency is ignored.

	
improve_result()

	Fits the combined found frequencies to the original light curve, hence improving the fit of the total model.

	
plot_lc(show=False, result=None, **kwargs)

	Plots the light curve. If a result is already computed, it also plots the resulting model

	Parameters

	
	show – if this is set, pyplot.show() is called

	kwargs – kwargs for lightkurve.LightCurve.scatter

	
plot_pdg(show=False, plot_insignificant=False, **kwargs)

	Plots the periodogram. If the result is already computed, it will mark the found frequencies in the
periodogram.

	Parameters

	
	show – if this is set, pyplot.show() is called

	plot_insignificant – Flag, if set, insignififcant frequencies are marked in the perioodogram

	kwargs – kwargs for lightkurve.Periodogram.plot

	Returns

	

	
save(path, store_obj=False)

	Saves the result of the analysis to a given folder.

	Parameters

	
	path (str) – Path where the result is stored

	store_obj – If this is set, the Smurfs object is stored, and can be later reloaded.

	
static from_path(path)

	Loads a smurfs object from path. You need to have set the store_obj flag in save, for this object to be
saved.

	
static load_results(path)

	Loads the pandas dataframes from the results file
:type path: str
:param path: exact path of the results file
:return: 3 pandas dataframes, settings, statistics and results

smurfs.FFinder

	
class FFinder(smurfs, f_min=None, f_max=None)

	The FFinder object computes all frequencies according to the input parameters. After instantiating this object,
use the run method to start the computation of frequencies.

	Parameters

	
	smurfs – Smurfs object

	f_min (Optional[float]) – Lower bound frequency that is considered

	f_max (Optional[float]) – Upper bound frequency that is considered

	
run(snr=4, window_size=2, skip_similar=False, similar_chancel=True, extend_frequencies=0, improve_fit=True, mode='lmfit', frequency_detection=None)

	Starts the frequency extraction from a light curve. In general, it always uses the frequency of maximum power
and removes it from the light curve. In general, this process is repeated until we reach a frequency that
has a SNR below the lower SNR bound. It is possible to extend this process, by setting the extend_frequencies
parameter. It then stops after extend_frequencies insignificant frequencies are found.
If similar_chancel is set, the process also stops after 10 frequencies with a standard deviation of 0.05
were found in a row.

	Parameters

	
	snr (float) – Lower bound Signal to noise ratio

	window_size (float) – Window size, to compute the SNR

	skip_similar (bool) – If this is set and 10 frequencies with a standard deviation of 0.05 were found in a row, that region will be ignored for all further analysis.

	similar_chancel – If this is set and skip_similar is False, the run chancels after 10 frequencies with a standard deviation of 0.05 were found in a row.

	extend_frequencies (int) – Defines the number of insignificant frequencies, the analysis extends to.

	improve_fit – If this is set, the combination of frequencies are fitted to the data set to improve the parameters

	mode – Fitting mode. Can be either ‘lmfit’ or ‘scipy’

	frequency_detection – If this value is not None and the ratio between the amplitude of the found frequency and the amplitude of the frequency in the original spectrum exceeds this value, this frequency is ignored.

	Return type

	DataFrame

	Returns

	Pandas dataframe, consisting of the results for the analysis. Consists of a Frequency object, frequency, amplitude, phase, snr, residual noise and a significance flag.

	
plot(ax=None, show=False, plot_insignificant=False, **kwargs)

	Plots the periodogram of the data set, including the found frequencies.

	Parameters

	
	ax (Optional[Axes]) – Axes object

	show – Show flag, if True, pylab.show is called

	plot_insignificant – If True, insignificant frequencies are shown

	kwargs – kwargs for Periodogram.plot

	
improve_result()

	Improves the result by fitting the combined result to the original light curve

	Return type

	DataFrame

smurfs.Frequency

	
class Frequency(time, flux, window_size, snr, flux_err=None, f_min=None, f_max=None, rm_ranges=None)

	The Frequency class represents a single frequency of a given data set. It takes the frequency of maximum
power as the guess for pre-whitening. It also computes the Signal to noise ratio of that frequency.
After instantiating this class, you can call pre-whiten, which tries to fit the frequency to
the light curve, and returns the residual between the original light curve and the model of
the frequency.

	Parameters

	
	time (ndarray) – Time axis

	flux (ndarray) – Flux axis

	window_size (float) – Window size, used to compute the SNR

	snr (float) – Lower end signal to noise ratio, defines if a frequency is marked as significant

	flux_err (Optional[ndarray]) – Error in the flux

	f_min (Optional[float]) – Lower end of the frequency range considered. If None, it uses 0

	f_max (Optional[float]) – Upper end of the frequency range considered. If None, it uses the Nyquist frequency

	rm_ranges (Optional[List[Tuple[float]]]) – Ranges of frequencies, that should be ignored (List of tuples, that contain a f_min -> f_max range. These areas are ignored)

	
property amp

	Returns the amplitude of the found frequency (in mag)

	Return type

	Union[float, Variable]

	
property f

	Returns the frequency of the found frequency (in c/d)

	Return type

	Union[float, Variable]

	
property phase

	Returns the phase of the found frequency (between 0 and 1)

	Return type

	Union[float, Variable]

	
property significant

	Returns the significance of the frequency. True –> significant, False –> insignificant

	Return type

	bool

	
property label

	Returns the label of the found frequency

	Return type

	str

	
property lc

	Represents the light curve on which the analysis is performed

	Return type

	LightCurve

	
property snr

	Computes the signal to noise ratio of a given frequency. It considers the area from the first minima before
the peak until window halfed, as well as the area from the first minima after the peak until window halfed.

	Return type

	float

	Returns

	Signal to noise ratio of the peak

	
scipy_fit()

	Performs a scipy fit on the light curve of the object. Limits are 50% up and down from the initial guess.
Computes uncertainties using the provided covariance matrix from curve_fit.

	Return type

	Tuple[Variable, Variable, Variable, Tuple[float, float, float]]

	Returns

	values for amplitude,frequency, phase (in this order) including their uncertainties, as well as the param object

	
lmfit_fit()

	Uses lmfit to perform the sin fit on the light curve. We first fit all three free parameters, and then vary
the phase parameter, to get a more accurate value for it. Uncertainties are computed according to
Montgomery & O’Donoghue (1999).

	Return type

	Tuple[Variable, Variable, Variable, List[float]]

	Returns

	values for amplitude,frequency, phase (in this order) including their uncertainties, as well as the param object

	
pre_whiten(mode='lmfit')

	‘Pre whitens’ a given light curve. As an estimate, the method always uses the frequency with maximum power.
It then performs the fit according to the mode parameter, and returns a Lightcurve object with the reduced
light curve

:param mode:’scipy’ or ‘lmfit’
:rtype: LightCurve
:return: Pre-whitened lightcurve object

	
plot(ax=None, show=False, use_guess=False)

	Plots the periodogramm. If a fit was already performed, it uses the fit _result by default. This
can be overwritten by setting use_guess to True

	Parameters

	
	ax (Optional[Axes]) – Axis object

	show – Shows the plot

	use_guess – Uses the guess

	Return type

	Optional[Axes]

	Returns

	Axis object if plot was not shown

	
find_adjacent_minima()

	Finds the adjacent minima to the guessed frequency, and sets them within the class.

smurfs.Periodogram

	
class Periodogram(frequency, power, nyquist=None, targetid=None, default_view='frequency', meta={})

	Custom Periodogram class, fit to the needs of smurfs. Mirrors the behaviour of the Lightkurve Periodogram class,
and is derived from it. See
https://docs.lightkurve.org/api/lightkurve.periodogram.Periodogram.html#lightkurve.periodogram.Periodogram for
documentation on the constructor parameters.

This class differs from the Lightkurve Periodogram class through two aspects:
1) It adds a different static method, that converts a Lightcurve object into a periodogram.
2) The plotting and saving of data has been adapted to fit the needs of smurfs

	
static from_lightcurve(lc, f_min=None, f_max=None, remove_ranges=None, samples_per_peak=10)

	Computes a periodogram from a Lightcurve object and normalizes it according to Parcivals theorem. It then
reflects the physical values in the Light curve and has the same units. It then returns a Periodogram object.

It also has a possibility to remove certain ranges from the periodogram.
:type lc: LightCurve
:param lc: Lightcurve object
:param f_min: Lower range for the periodogram
:param f_max: Upper range for the periodogram
:type remove_ranges: Optional[List[Tuple[float]]]
:param remove_ranges: List of tuples, that represent areas in the periodogram that are ignored. These are
removed from the periodogram
:param samples_per_peak: number of samples per peak
:return: Periodogram object

	
plot(scale='linear', ax=None, xlabel=None, ylabel=None, title='', style='lightkurve', view=None, unit=None, color='k', **kwargs)

	Plots the periodogram. Same call signature as lightkurve.periodogram.Periodogram.

	
to_csv(file)

	Stores the periodogram into a file.
:param file: File object

Other functions

Data Download

	
download_lc(target_name, flux_type='PDCSAP', mission='TESS', sigma_clip=4, iters=1, do_pca=False, do_psf=False)

	Downloads a light curve using the TESS mission. If the star has been observed in the SC mode, it
will download the original light curve from MAST. You can also choose the flux type you want to use.

If it wasn’t observed in SC mode, it will try to extract a light curve from the FFIs if the target has
been observed by TESS.

You can also download light curves of stars that are observed by the K2 or Kepler mission, by setting
the mission parameter.

	Parameters

	
	target_name (str) – Name of the target. You can either provide the TIC ID (TIC …), Kepler ID (KIC …), K2 ID(EPIC …) or a name that is resolvable by Simbad.

	flux_type – Type of flux in the SC mode. Can be either PDCSAP or SAP or PSF for long cadence data

	mission (str) – Mission from which the light curves are extracted. By default TESS only is used. You can consider all missions by passing ‘all’ (TESS, Kepler, K2)

	sigma_clip – Sigma clip parameter. Defines the number of standard deviations that are clipped.

	iters – Iterations for the sigma clipping

	Return type

	Tuple[LightCurve, Optional[List[Figure]]]

	Returns

	lightkurve.LightCurve object and validation page if extracted from FFI

	
combine_light_curves(target_list, sigma_clip=4, iters=1)

	
	Return type

	LightCurve

	
cut_ffi(tic_id, clip=4, iter=1, do_pca=False, do_psf=False, flux_type='PDCSAP')

	Extracts light curves from FFIs using TESScut and Eleanor. This function automatically combines all available
sectors for a given target.

	Parameters

	
	tic_id (int) – TIC ID of the target

	clip (float) – Sigma clip range of the target.

	iter (int) – Iterations of the sigma clipping

	do_pca (bool) – Perform pca analysis with eleanor

	do_psf (bool) – Perform psf analysis with eleanor

	flux_type – Flux type that is returned. Choose between ‘PDCSAP’,’SAP’,’PSF’

	Return type

	Tuple[LightCurve, List[Figure]]

	Returns

	Lightcurve

	
mag(lc)

	Converts and normalizes a LighCurve object to magnitudes.

	Parameters

	lc (LightCurve) – lightcurve object

	Return type

	LightCurve

	Returns

	reduced light curve object

	
load_file(file, clip=4, it=1, apply_file_correction=False)

	Loads and normalizes target content
:type file: str
:param file: Name of target including path
:rtype: LightCurve
:return: LightCurve object

Miscellaneous

	
m_od_uncertainty(lc, a)

	Computes uncertainty for a given light curve according to Montgomery & O’Donoghue (1999).

	Parameters

	
	lc (LightCurve) – smurfs.Lightcurve() object

	a (float) – amplitude of the frequency

	Return type

	Tuple

	Returns

	A tuple of uncertainties in this order: Amplitude, frequency, phase

	
mprint(text, type)

	

	
ctext(text, type)

	
	Return type

	str

	
class cd(newPath)

	Directory changer. can change the directory using the ‘with’ keyword, and returns to the previous path
after leaving intendation. Example:

	with cd(“some/path/to/go”): # changing dir
	foo()
…
bar()

#back to old dir

Downloading data

One of the core features in SMURFS is the downloading of data from MAST directly. To download these light curves, simply instantiate a smurfs object. Lets download the TESS observations for our favourite Delta Scuti pulsator: Beta Pictoris

[1]:

from smurfs import Smurfs

[2]:

star = Smurfs(target_name="Beta Pictoris")

 Searching processed light curves for Beta Pictoris on mission(s) TESS ...
 Resolving Beta Pictoris to TIC using MAST ...
 TIC ID for Beta Pictoris: TIC 270577175
 Short cadence observations available for Beta Pictoris. Downloading ...
 Found processed light curve for Beta Pictoris!
 Using TESS observations! Combining sectors ...
 Total observation length: 105.18 days.
 Duty cycle for Beta Pictoris: 86.02%

[3]:

star.plot_lc()

[image: ../_images/examples_downloading_data_3_0.png]

But using the most common name alone isn’t the only thing we can use here. We can also use the Gaia ID for example:

[4]:

star = Smurfs(target_name="Gaia DR2 4792774797545105664")

 Searching processed light curves for Gaia DR2 4792774797545105664 on mission(s) TESS ...
 Resolving Gaia DR2 4792774797545105664 to TIC using MAST ...
 TIC ID for Gaia DR2 4792774797545105664: TIC 270577175
 Short cadence observations available for Gaia DR2 4792774797545105664. Downloading ...
 Found processed light curve for Gaia DR2 4792774797545105664!
 Using TESS observations! Combining sectors ...
 Total observation length: 105.18 days.
 Duty cycle for Gaia DR2 4792774797545105664: 86.02%

[5]:

star.plot_lc()

[image: ../_images/examples_downloading_data_6_0.png]

As we can see, both stars are the same, as their TIC IDs are the same.

LC data

But downloading SC data from TESS is easy. We can also download LC data for TESS targets. Lets consider the star ET Cha

[6]:

star = Smurfs(target_name='ET Cha')

 Searching processed light curves for ET Cha on mission(s) TESS ...
 Resolving ET Cha to TIC using MAST ...
 TIC ID for ET Cha: TIC 323292671
 No short cadence data available for ET Cha, extracting from FFI ...
 Extracting light curves from FFIs, this may take a bit ...
 Found star in Sector(s) 11 12 13

 Extracted light curve for TIC 323292671!
 Total observation length: 82.48 days.
 Duty cycle for ET Cha: 92.88%

[image: ../_images/examples_downloading_data_8_1.png]

[image: ../_images/examples_downloading_data_8_2.png]

[image: ../_images/examples_downloading_data_8_3.png]

[image: ../_images/examples_downloading_data_8_4.png]

As you can see above, if you provide a LC target, SMURFS will automatically generate a validation page for its reduction. At the top, you can see the combination of all three sectors, representing the first page in the pdf. The other pages consist of the individual sectors and their reductions. You can see the individual fluxes. By default it always uses the PCA flux. It also shows you the Background flux of the CCD in the plot below that and the aperture as well as the FFI below that.

But which flux is the best? You can pass the pca and psf flag, to show you all the different fluxes available through the Eleanor pipeline.

[7]:

star = Smurfs(target_name='ET Cha',do_pca=True,do_psf=True)

 Searching processed light curves for ET Cha on mission(s) TESS ...
 Resolving ET Cha to TIC using MAST ...
 TIC ID for ET Cha: TIC 323292671
 No short cadence data available for ET Cha, extracting from FFI ...
 Extracting light curves from FFIs, this may take a bit ...
 Found star in Sector(s) 11 12 13
WARNING:tensorflow:From /Users/marco/Documents/Dev/science/smurf/venv/lib/python3.6/site-packages/eleanor_mamu-1.0.2-py3.6.egg/eleanor/targetdata.py:826: The name tf.logging.set_verbosity is deprecated. Please use tf.compat.v1.logging.set_verbosity instead.

WARNING:tensorflow:From /Users/marco/Documents/Dev/science/smurf/venv/lib/python3.6/site-packages/eleanor_mamu-1.0.2-py3.6.egg/eleanor/targetdata.py:826: The name tf.logging.ERROR is deprecated. Please use tf.compat.v1.logging.ERROR instead.

100%|██████████| 1248/1248 [00:12<00:00, 99.27it/s]

100%|██████████| 1289/1289 [00:12<00:00, 106.55it/s]

100%|██████████| 1320/1320 [00:12<00:00, 102.56it/s]

 Extracted light curve for TIC 323292671!
 Total observation length: 82.48 days.
 Duty cycle for ET Cha: 92.88%

[image: ../_images/examples_downloading_data_10_7.png]

[image: ../_images/examples_downloading_data_10_8.png]

[image: ../_images/examples_downloading_data_10_9.png]

[image: ../_images/examples_downloading_data_10_10.png]

All available fluxes are now visible in the Validation page. The PCA flux seems to be the best for this target, which is the default flux used. If we would want to use any other, we could pass the flux_type parameter.

[8]:

star = Smurfs(target_name='ET Cha', flux_type='SAP')

 Searching processed light curves for ET Cha on mission(s) TESS ...
 Resolving ET Cha to TIC using MAST ...
 TIC ID for ET Cha: TIC 323292671
 No short cadence data available for ET Cha, extracting from FFI ...
 Extracting light curves from FFIs, this may take a bit ...
 Found star in Sector(s) 11 12 13

 Extracted light curve for TIC 323292671!
 Total observation length: 82.48 days.
 Duty cycle for ET Cha: 92.80%

[image: ../_images/examples_downloading_data_12_1.png]

[image: ../_images/examples_downloading_data_12_2.png]

[image: ../_images/examples_downloading_data_12_3.png]

[image: ../_images/examples_downloading_data_12_4.png]

Other misssions

We can also use other missions if we like. Lets have a look at the Star Kepler-10 from the Kepler mission:

[9]:

star = Smurfs(target_name='Kepler-10', mission='Kepler')

 Searching processed light curves for Kepler-10 on mission(s) Kepler ...
 Found processed light curve for Kepler-10!
 Using Kepler observations! Combining sectors ...
 Total observation length: 1470.46 days.
 Duty cycle for Kepler-10: 75.40%

[10]:

star.plot_lc()

[image: ../_images/examples_downloading_data_15_0.png]

The default is however TESS. So if we don’t provide the mission parameter, SMURFS will download the SC data.

[11]:

star = Smurfs(target_name='Kepler-10')

 Searching processed light curves for Kepler-10 on mission(s) TESS ...
 Resolving Kepler-10 to TIC using MAST ...
 TIC ID for Kepler-10: TIC 377780790
 Short cadence observations available for Kepler-10. Downloading ...
 Found processed light curve for Kepler-10!
 Using TESS observations! Combining sectors ...
 Total observation length: 26.85 days.
 Duty cycle for Kepler-10: 96.44%

[12]:

star.plot_lc()

[image: ../_images/examples_downloading_data_18_0.png]

[]:

Plotting things

SMURFS implements quite a lot of different plotting mechanisms. So lets have a look at the different ways you can plot things with SMURFS. Lets first get some data and analyze it:

[1]:

from smurfs import Smurfs

[2]:

star = Smurfs(target_name='Gamma Doradus')

 Searching processed light curves for Gamma Doradus on mission(s) TESS ...
 Resolving Gamma Doradus to TIC using MAST ...
 TIC ID for Gamma Doradus: TIC 219234987
 Short cadence observations available for Gamma Doradus. Downloading ...

Warning: 31% (6168/19692) of the cadences will be ignored due to the quality mask (quality_bitmask=175).

 Found processed light curve for Gamma Doradus!
 Using TESS observations! Combining sectors ...
 Total observation length: 78.32 days.
 Duty cycle for Gamma Doradus: 84.45%

[3]:

star.run(snr=4,window_size=2)

 Periodogramm from 0.0 1 / d to 360.0 1 / d
 Starting frequency extraction.
 Skip similar: Deactivated
 Chancel after 10 similar: Activated
 Window size: 2
 Number of extended frequencies: 0
 Nyquist frequency: 360.0 1 / d
 List of frequencies, amplitudes, phases, S/N
 F0 1.363601+/-0.000004 1 / d 0.01056+/-0.00008 mag 0.5105+/-0.0011 14.621917538996478
 F1 1.3214676+/-0.0000031 1 / d 0.01011+/-0.00006 mag 0.8538+/-0.0009 17.646618113213755
 F2 1.470851+/-0.000007 1 / d 0.002806+/-0.000035 mag 0.8600+/-0.0020 7.578344472336695
 F3 1.878144+/-0.000007 1 / d 0.002413+/-0.000032 mag 0.5167+/-0.0021 6.717143847007492
 F4 1.385307+/-0.000007 1 / d 0.002228+/-0.000030 mag 0.1748+/-0.0022 7.318522855378772
 F5 0.316642+/-0.000008 1 / d 0.002030+/-0.000028 mag 0.2544+/-0.0022 5.597834999218046
 F6 1.417226+/-0.000008 1 / d 0.001813+/-0.000027 mag 0.3842+/-0.0024 6.523381016995975
 F7 2.742524+/-0.000008 1 / d 0.001779+/-0.000026 mag 0.9427+/-0.0023 9.558566515908968
 F8 0.112357+/-0.000008 1 / d 0.001629+/-0.000024 mag 0.0235+/-0.0024 5.27044577952894
 F9 1.237200+/-0.000009 1 / d 0.001393+/-0.000023 mag 0.0913+/-0.0026 5.176607940138036
 F10 1.681520+/-0.000011 1 / d 0.001115+/-0.000022 mag 0.1662+/-0.0032 4.585937811798608
 Stopping extraction after 11 frequencies.
 Total frequencies: 11
 Gamma Doradus Analysis done!

Plotting the light curve

Now, if you want to plot the light curve, you can call the plot_lc method

[4]:

star.plot_lc()

[image: ../_images/examples_plotting_things_5_0.png]

In black you can see the data set, in red the model.

In the backend, SMURFS uses the lightkurve.LightCurve.plot method to plot the light curve. You have access to all the parameters for these objects. We can make use of this if we want to plot the light curve without the model:

[5]:

star.lc.scatter()

[5]:

<matplotlib.axes._subplots.AxesSubplot at 0x1319cb5c0>

[image: ../_images/examples_plotting_things_7_1.png]

Plotting periodograms

What is true for the LightCurve objects, is also true for the periodogram. To plot the periodogram, including the significant frequencies, you can use the plot_pdg function

[6]:

star.plot_pdg()

[image: ../_images/examples_plotting_things_9_0.png]

This of course restricts us to the range where significant frequencies have been found. If we want the whole periodogram, we can use the pdg property

[7]:

star.pdg.plot()

[7]:

<matplotlib.axes._subplots.AxesSubplot at 0x13246d518>

[image: ../_images/examples_plotting_things_11_1.png]

The individual frequencies

As noted in previous chapters, the result property also contains all the individual frequencies. You can access them using iloc

[8]:

star.result

[8]:

 Looking at the full frame images of SC data

Looking at the full frame images of SC data

Sometimes it might be useful to take a look at the FFI and the LC time series of data for which short cadence is available. By default, SMURFS uses the SC data, but using some internal functions, we can still take a look at the FFI

[1]:

from smurfs import Smurfs

Lets consider Beta Pictoris. It has 4 sectors of SC available at this point.

[2]:

star = Smurfs(target_name="Beta Pictoris")

 Searching processed light curves for Beta Pictoris on mission(s) TESS ...
 Resolving Beta Pictoris to TIC using MAST ...
 TIC ID for Beta Pictoris: TIC 270577175
 Short cadence observations available for Beta Pictoris. Downloading ...
 Found processed light curve for Beta Pictoris!
 Using TESS observations! Combining sectors ...
 Total observation length: 105.18 days.
 Duty cycle for Beta Pictoris: 86.02%

[3]:

star.plot_lc()

[image: ../_images/examples_fullframe_sc_data_4_0.png]

But how does the FFI and the surrounding look like? For this, we’ll use what Smurfs internally: the cut_ffi function. For this function to work, we need the TIC number. We can either take a look at the output above, or use astroquery to find the TIC ID

[5]:

from astroquery.mast import Catalogs

[9]:

tic_id = int(Catalogs.query_object("Beta Pictoris",catalog='TIC',radius=0.003)[0]['ID'])
tic_id

[9]:

270577175

Now lets feed this into smurfs

[4]:

from smurfs.preprocess.tess import cut_ffi

[10]:

lc,fig = cut_ffi(tic_id=tic_id)

 Found star in Sector(s) 4 5 6 7
Inflating...
This is the first light curve you have made for this sector. Getting eleanor metadata products for Sector 4...
This will only take a minute, and only needs to be done once. Any other light curves you make in this sector will be faster.
Target Acquired
Cadences Calculated
Quality Flags Assured
CBVs Made
Success! Sector 4 now available.
Inflating...
Inflating...
This is the first light curve you have made for this sector. Getting eleanor metadata products for Sector 5...
This will only take a minute, and only needs to be done once. Any other light curves you make in this sector will be faster.
Target Acquired
Cadences Calculated
Quality Flags Assured
CBVs Made
Success! Sector 5 now available.
Inflating...
Inflating...
Inflating...
This is the first light curve you have made for this sector. Getting eleanor metadata products for Sector 7...
This will only take a minute, and only needs to be done once. Any other light curves you make in this sector will be faster.
Target Acquired
Cadences Calculated
Quality Flags Assured
CBVs Made
Success! Sector 7 now available.
Inflating...

 Extracted light curve for TIC 270577175!

[image: ../_images/examples_fullframe_sc_data_10_1.png]

[image: ../_images/examples_fullframe_sc_data_10_2.png]

[image: ../_images/examples_fullframe_sc_data_10_3.png]

[image: ../_images/examples_fullframe_sc_data_10_4.png]

[image: ../_images/examples_fullframe_sc_data_10_5.png]

[image: ../_images/examples_fullframe_sc_data_10_6.png]

[image: ../_images/examples_fullframe_sc_data_10_7.png]

[image: ../_images/examples_fullframe_sc_data_10_8.png]

[image: ../_images/examples_fullframe_sc_data_10_9.png]

[image: ../_images/examples_fullframe_sc_data_10_10.png]

[image: ../_images/examples_fullframe_sc_data_10_11.png]

[image: ../_images/examples_fullframe_sc_data_10_12.png]

[image: ../_images/examples_fullframe_sc_data_10_13.png]

[]:

 Index

Index

 A
 | C
 | D
 | F
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T

A

 	
 	amp() (Frequency property)

C

 	
 	cd (class in smurfs.support.support)

 	combinations() (Smurfs property)

 	
 	combine_light_curves() (in module smurfs.preprocess.tess)

 	ctext() (in module smurfs.support.mprint)

 	cut_ffi() (in module smurfs.preprocess.tess)

D

 	
 	download_lc() (in module smurfs.preprocess.tess)

 	
 	duty_cycle() (Smurfs property)

F

 	
 	f() (Frequency property)

 	ff() (Smurfs property)

 	FFinder (class in smurfs)

 	find_adjacent_minima() (Frequency method)

 	
 	flatten() (Smurfs method)

 	fold() (Smurfs method)

 	Frequency (class in smurfs)

 	from_lightcurve() (Periodogram static method)

 	from_path() (Smurfs static method)

I

 	
 	improve_result() (FFinder method)

 	(Smurfs method)

L

 	
 	label() (Frequency property)

 	lc() (Frequency property)

 	
 	lmfit_fit() (Frequency method)

 	load_file() (in module smurfs.preprocess.file)

 	load_results() (Smurfs static method)

M

 	
 	m_od_uncertainty() (in module smurfs._smurfs.frequency_finder)

 	
 	mag() (in module smurfs.preprocess.tess)

 	mprint() (in module smurfs.support.mprint)

N

 	
 	nyquist() (Smurfs property)

O

 	
 	obs_length() (Smurfs property)

P

 	
 	Periodogram (class in smurfs)

 	periodogram() (Smurfs property)

 	phase() (Frequency property)

 	plot() (FFinder method)

 	(Frequency method)

 	(Periodogram method)

 	
 	plot_lc() (Smurfs method)

 	plot_pdg() (Smurfs method)

 	pre_whiten() (Frequency method)

R

 	
 	result() (Smurfs property)

 	
 	run() (FFinder method)

 	(Smurfs method)

S

 	
 	save() (Smurfs method)

 	scipy_fit() (Frequency method)

 	settings() (Smurfs property)

 	significant() (Frequency property)

 	
 	Smurfs (class in smurfs)

 	snr() (Frequency property)

 	spectral_window() (Smurfs property)

 	statistics() (Smurfs property)

T

 	
 	to_csv() (Periodogram method)

_static/minus.png

_static/plus.png

_static/file.png

_images/examples_downloading_data_18_0.png
Flux [mag]

—0.005

0.000

0.005

TIC 377780790

I
1685

I I I
1690 1695 1700
Time - 2457000 [BTD days]

I L
1705 1710

_images/examples_downloading_data_3_0.png
Flux [mag]

—0.005—

0.000—

0.005—

«++ TIC 270577175

I
1420

I I I I L
1440 1460 1480 1500 1520
Time - 2457000 [BTD days]

_images/examples_downloading_data_12_4.png
1.2

11

1.0

0.9

0.8

175

150

125

100

75

50

TIC 3232 71 - Sector 13
RIRRA

Raw flux i
Corrected flux

1655 1660

1665 1670 1675 1680

Background flux

—— 1D postcard

1655 1660 1665 1670 1675 1680
TPF with aperture Aperture content Interpolated background
L |
E -

_images/examples_downloading_data_15_0.png
0.000

0.001

0.002

+++ KIC11904151

I I I I I
500 750 1000 1250 1500
Time - 2454833 [BK]D days]

_images/examples_downloading_data_8_2.png
2.5

2.0

15

1.0

2500

2000

1500

1000

500

TIC 323292671 - Sector 11

Raw flux
Corrected flux
PCA flux

1600 1605

1610 1615 1620 1625

Background flux

—— 1D postcard

1600

TPF with aperture

1605

1610

Aperture content

1615 1620 1625

Interpolated background

L]

_images/examples_downloading_data_8_3.png
1.2

11

1.0

0.9

0.8

0.7

0.6

600

400

200

Corrected flux
PCA flux :) '

1625 1630 1635 1640 1645 1650

Background flux

—— 1D postcard

1625 1630 1635 1640 1645 1650

TPF with aperture Aperture content Interpolated background

L -

_images/examples_downloading_data_6_0.png
Flux [mag]

—0.005—

0.000—

0.005—

«++ TIC 270577175

I
1420

I I I I L
1440 1460 1480 1500 1520
Time - 2457000 [BTD days]

_images/examples_downloading_data_8_1.png
Flux

1000

—1000

—2000

—3000

—4000

—5000

FiE-323292671 —extracted-ight curve, fluxtype-PDESAP

Sector 11
Sector 12
Sector 13

1600 1620

1640 1660 1680
Time

_images/examples_downloading_data_8_4.png
1.2

11

1.0

0.9 :
Raw flux

0.8 - Corrected flux
PCA flux

0.7

1655 1660 1665 1670 1675 1680

Background flux

175
—— 1D postcard
150
125
100

75

50

1655 1660 1665 1670 1675 1680

TPF with aperture Aperture content Interpolated background

. - 2

_images/examples_fullframe_sc_data_10_1.png
400

200

Flux

—200

—400

—600

TIC 270577175 -

extracted light curve, flux type: PDCSAP

Sector 4
Sector 5
Sector 6

1420

1440

1460
Time

1480

1500

1520

_images/examples_downloading_data_12_1.png
20000

15000

10000

Flux

5000

—5000

Loldees st

TIC 323292671 - extracted light curve, flux type: SAP

Sector 11
Sector 12
Sector 13

1600

1620 1640 1660 1680
Time

_images/examples_downloading_data_12_2.png
2.5

2.0

15

1.0

2500

2000

1500

1000

500

TIC 323292671 - Sector 11

Raw flux
Corrected flux

1600 1605

1610 1615 1620 1625

Background flux

—— 1D postcard

1600

TPF with aperture

1605

1610

Aperture content

1615 1620 1625

Interpolated background

L]

_images/examples_downloading_data_10_8.png
2.5

2.0

15

1.0

2500

2000

1500

1000

500

TIC 323292671 - Sector 11

Raw flux
Corrected flux
PCA flux

PSF modelled flux

1600 1605

1610 1615 1620 1625

Background flux

—— 1D postcard

1600

TPF with aperture

1605

1610

Aperture content

1615 1620 1625

Interpolated background

L]

_images/examples_downloading_data_10_9.png
1.2

1.0

0.8

0.6

600

400

200

Corrected flux
PCA flux .
PSF modelled flux *

1625 1630 1635 1640 1645 1650

Background flux

—— 1D postcard

1625 1630 1635 1640 1645 1650

TPF with aperture Aperture content Interpolated background

L -

_images/examples_downloading_data_12_3.png
1.2

11

1.0

0.9

0.8 R -+ Raw flux
o Corrected flux

0.7

1625 1630 1635 1640 1645 1650

Background flux

—— 1D postcard
600

400

200

1625 1630 1635 1640 1645 1650

TPF with aperture Aperture content Interpolated background

L -

_images/examples_fullframe_sc_data_10_10.png
Pixel by pixel light curve (full cutout])

4 e e e
A 1 e e e] e 0 0
4 9 e] e e e
O 0 0 e e | e e

I e e e e e HHHHMH
e e e HHHH
o . | R ' '
e e -,HH
| ik
unun{ | r
ieluainalanianls e
W e e
MMHH# r e e e
I8 e e - o o e
0 0 9 o] =]] e

nav.xhtml

 Table of Contents

 		
 Smurfs - frequency analysis made easy

 		
 About SMURFS

 		
 Functionality

 		
 References and links

 		
 Installation and requirements

 		
 Requirements

 		
 Installation

 		
 Quickstart

 		
 Interactive Mode

 		
 Standalone settings

 		
 Positional Arguments

 		
 Named Arguments

 		
 Internals

 		
 smurfs.Smurfs()

 		
 smurfs.FFinder()

 		
 smurfs.Frequency()

 		
 Downloading and reducing data

 		
 SC data

 		
 LC data download

 		
 Using internal functions

 		
 smurfs.Smurfs

 		
 smurfs.FFinder

 		
 smurfs.Frequency

 		
 smurfs.Periodogram

 		
 Other functions

 		
 Data Download

 		
 Miscellaneous

 		
 Downloading data

 		
 LC data

 		
 Other misssions

 		
 Plotting things

 		
 Plotting the light curve

 		
 Plotting periodograms

 		
 The individual frequencies

 		
 Plotting only part of the model

 		
 Looking at the full frame images of SC data

_images/examples_downloading_data_10_10.png
1.2

1.0

0.8

0.6

175

150

125

100

75

50

Raw flux

Corrected flux

PCA flux

PSF modelled flux '

TI;\.3232M7A - Sgctor 1& AR

AN

1655 1660

1665 1670

Background flux

1675 1680

—— 1D postcard

1655 1660

TPF with aperture

1665 1670

Aperture content

1675 1680

Interpolated background

£

_images/examples_fullframe_sc_data_10_13.png
Pixel by pixel light

tttttt (full cutout)

o 3 0

|

P

e, |

W

mlm

/i

%HHHQ

s

éigﬁWﬁﬁ

e

ol b Ll

“J‘ N
a; = iﬂm
T -
i] il i
1! 1Y i [

_images/examples_downloading_data_10_7.png
Flux

1000

—1000

—2000

—3000

—4000

—5000

FiE-323292671 —extracted-ight curve, fluxtype-PDESAP

Sector 11
Sector 12
Sector 13

1600 1620

1640 1660 1680
Time

_images/examples_fullframe_sc_data_10_2.png
1.20

115

110

1.05

1.00

TIC 270577175 - tord

Raw flux
Corrected flux
PCA flux

——e

1410 1415 1420 1425 1430 1435

800

600

400

200

0

—200

Background flux

2

—— 1D postcard

1410 1415 1420 1425 1430 1435

TPF with aperture Aperture content Interpolated background

_images/examples_fullframe_sc_data_10_11.png
1.20

115

110

1.05

1.00

100

—100

—200

THC270577175 - Sector

Raw flux
Corrected flux
PCA flux

1495

1500 1505

Background flux

1510 1515

—— 1D postcard
1D TPF

1495

TPF with aperture

1500 1505 1510 1515

Aperture content Interpolated background

_images/Uh2UhpZ.png
SMURFS

_images/examples_fullframe_sc_data_10_12.png
Pixel by pixel light curve (Aperture only)

_images/examples_fullframe_sc_data_10_5.png
1.20

115

110

1.05

1.00

6000

5000

4000

3000

2000
1000

TIC 270577175 - Sectors
\
Raw flux
Corrected flux
PCA flux
1440 1445 1450 1455 1460 1465
Background flux
—— 1D postcard
——————— 1D TPF
N
T T 1 T T 1
1440 1445 1450 1455 1460 1465
TPF with aperture Aperture content Interpolated background
[%
F

_images/examples_fullframe_sc_data_10_6.png
Pixel by pixel light curve (Aperture only)

_images/examples_fullframe_sc_data_10_3.png
Pixel by pixel light curve (Aperture only)

_images/examples_fullframe_sc_data_10_4.png
Bl 13| e
il laims.| |andaidauaikait
| L i e
M Hata e s] i e
e .1
/a0 | O
i .| o
|t .|| oo
o o
I \d T e Lot
I). I
.ol o | 2 ot
i i i i it
il i i | Lot e M
i e | | et < e

_images/examples_fullframe_sc_data_10_7.png
Pixel by pixel light curve (full cutout)

I

WJ:.
ll

nﬂﬁl‘
Ls“

_images/examples_fullframe_sc_data_10_8.png
1.20

115

110

1.05

1.00

200

100

—100

—200

TIC 270577175 e
Raw flux
Corrected flux
PCA flux

1470 1475 1480 1485 1490

Background flux

—— 1D postcard
1D TPF

1470

TPF with aperture

1475 1480 1485 1490

Aperture content Interpolated background

_images/examples_fullframe_sc_data_10_9.png
Pixel by pixel light curve (Aperture only)

I
Foer

_images/examples_plotting_things_14_1.png
Fit: 0.316642+/-0.0000201/d

00020 |
Window
0.0015
[
ke
=]
£ 00010
o
£
P4
0.0005
0.0000
1.0 15 20 25

05
Frequency [3]

_images/examples_plotting_things_16_1.png
Flux [mag]

-0.03

—-0.02

-0.01

0.00

0.01

_images/examples_fullframe_sc_data_4_0.png
Flux [mag]

—0.005—

0.000—

0.005—

«++ TIC 270577175

I
1420

I I I I L
1440 1460 1480 1500 1520
Time - 2457000 [BTD days]

_images/examples_plotting_things_11_1.png
Amplitude [mag]

50

T
100

1 1
150 200
Frequency [3]

T
250

T
300

T
350

_images/examples_plotting_things_20_2.png
Amplitude

Fit: 1.321203+/-0.000004 1 /d

Window

2
Frequency [3]

3

_images/examples_plotting_things_20_3.png
————— Fit: 1.470777+/-0.000015 1/ d
Window

w 0.002-

el

2

=

£ o001 f}w

sonol! N ‘ M\JM%WMMWWW
2 3 4

Frequency [3]

_images/examples_plotting_things_18_1.png
Amplitude [mag]

0.0020

0.0015

0.0010

0.0005

0.0000

50

T
100

1 1
150 200
Frequency [3]

T
250

T
300

T
350

_images/examples_plotting_things_20_1.png
Amplitude

Fit: 1.363741+/-0.000004 1 /d
Window

2 3 4
Frequency [3]

_images/examples_plotting_things_25_0.png
Flux [mag]

—0.04

—-0.02

0.00

0.02

«++ TIC 219234987

I
1400

I I I
1420 1440 1460
Time - 2457000 [BTD days]

_images/examples_plotting_things_5_0.png
Flux [mag]

—0.04

—-0.02

0.00

0.02

«++ TIC 219234987

I
1400

I I I
1420 1440 1460
Time - 2457000 [BTD days]

_images/examples_plotting_things_24_0.png
Flux [mag]

—-0.04

—-0.02

0.00

0.02

«++ TIC 219234987

I
1400

I I I
1420 1440 1460
Time - 2457000 [BTD days]

_images/gamma_doradus_output.png
